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1. Introduction 

The main purpose of this paper is to encourage the consideration and development of new 
models which design signal timings and take account of route choices.  

The aim is that such controls (1) actively encourage “economical” routeing patterns and (2) 
form part of a stable interaction involving routeing, queueing and control; taking account of 
the scarcity of junction space. The obvious scarce commodity in congested networks is 
“junction capacity”.  

The central idea is to make use of the natural dynamical system illustrated in figure 1 
within a model to design signal timings. 

 
 

SIGNAL CONTROL 
Current route-flows (and green-

times) cause the control algorithm 
to change green-times  

ROUTE-CHOICE 
Current green-times (and route-flows) 

give rise to travel times which  
cause travellers to change route  

Figure 1. A dynamical system arising when a responsive control system is utilised either in 
reality or within a model. Current route-flows change green-times (according to some 
responsive control policy or algorithm) and current green-times generate delays which 
change route-flows (as travellers seek quicker / cheaper routes). The loop is traversed 
indefinitely. Here we assume that the dynamical system is to be implemented within a model.  
 

Section 2 below shows how a simple dynamical mathematical model and a simple thought 
experiment may be used to justify a special responsive signal control strategy which does take 
advantage of the dynamical system illustrated in figure 1; by encouraging congestion reducing 
routeing changes and also leading to a stable interaction between route swaps, queueing delay 
changes and green-time swaps between signal stages.  

 The dynamical model designs signal timings which take some account of route choice. All 
of the components of the dynamical system follow the proportional adjustment process 
outlined in Smith (1984a). A much fuller version of section 2 is in an appendix. 

Section 3 gives a brief context and section 4 gives a brief conclusion. 
 

2. Outline of a dynamical routeing / control / queueing model using P0 and a proportional 
adjustment process 

2.1 The simple network  

We consider here the simple network in Fig. 2 with one node signalised.  



 
 
 

  Route 1   Link 1                      Stage 1 

 

 
 
 
Figure 2. A simple two route signal controlled network. 

2.2. A simple network and the P0  control policy or algorithm 

In this paper  
 si vehicles per hour is the saturation flow at the link i exit and  
 bi hours is to be the delay at the link i exit.  

Consider a junction with just two approaches or stages: link 1 and link 2. Then the P0 policy 
selects green times which equalise the following two values: 
    s1b1 and s2b2. 

Dynamically, if faced with two approaches where  
    s1b1 < s2b2  

the P0 signal control policy swaps green-time from approach 1 (or stage 1) to approach 2 (or 
stage 2) until  
    s1b1 = s2b2. 

2.3..A  simple network and the proportional switch re-routeing method. 
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igure 3. A two route network without signals
Here we make the above rather vague adjustments more precise using a route switch 
thod specified in Smith (1984a) as a simple and reasonable-looking day to day re-routeing 
cess. This has been called a “proportional-switch adjustment process”, or PAP, by He et al 
10)); it allows the stability or otherwise of a given traffic equilibrium to be studied. This is 

portant since unstable equilibria are unlikely to persist. Also if an existing equilibrium 
ght be moved by a control intervention to a “better” equilibrium then dynamical 
siderations are essential.  

Later in the paper we use the same switching process to change stage green times and 
ttleneck delays. So all switches in this paper follow the same proportional adjustment 
cess.  

We start here in this section 2.3 with route switches only to make the principles clear. 
ith (1984b, c) extends Smith (1984a) aiming to be quicker computationally.] 

ppose that, in the network in figure 3,  
X1(t)   =  the flow on route 1 on day t (in vehicles per hour) and 
X2(t)   =  the flow on route 2 on day t (in vehicles per hour). 

ppose also that costs depend on flows and that 
C1(X1(t)) = the cost of travel via route 1 on day t (in hours); and  
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 C2(X2(t)) = the cost of travel via route 2 on day t (in hours).  
Suppose finally that on a specific day t, C1(X1(t)) >  C1(X1(t)). How might the day to day 
system evolve? 
    A natural assumption is that the traveller flow swapping from route 1 on day t to route 2 on 
day t +1 is an increasing function of both  

• the flow X1(t) on the more expensive route 1 on day t and   
• the difference C1(X(t)) – C2(X(t)) in route costs on day t. 

Here X(t) = [X1(t), X2(t)]  is the route flow vector on day t and C(X(t)) = [C1(X(t)), C2(X(t))] is 
the route-cost vector on day t. The simplest natural swapping hypothesis, following on from 
above, is then that the traveller flow swapping from route 1 to route 2 will be proportional to 
the product of the two factors above. If the only swaps are from higher to lower cost routes 
then this “proportional to the product” assumption means that for some constant k > 0, the 
changes ∆1(X(t)), ∆2(X(t)) in the traveller flows on routes 1 and 2 will be given by the 
formulae:   
  ∆1(X(t)) [C1(X(t)) – C2(X(t))]    (2.1) )(1 tkX−=
and 
  ∆2(X(t)) [C1(X(t)) – C2(X(t))] .    (2.2)  )(1 tkX+=
For each real number x we put x+ = max{x, 0}. Using this notation (2.1), (2.2) become: 
 ∆1(X(t)) )(1 tkX−= [C1(X(t)) – C1(X(t))]+ )(2 tkX+ [C2(X(t)) – C1(X(t))]+  (2.3) 
and 
 ∆2(X(t)) )(2 tkX−= [C2(X(t)) – C1(X(t))]+ )(1 tkX+ [C1(X(t)) – C2(X(t))]+. 
 (2.4) 
Given these rates (2.3) and (2.4), the idealized day to day dynamical system becomes: 
 + ∆1(X(t))  and )()1( 11 tXtX =+ )()1( 22 tXtX =+ + ∆2(X(t)) 
or, if we put ∆(X(t)) = [∆1(X(t)), ∆2(X(t))], 
 X(t + 1) = X(t) + ∆(X(t)).        (2.5) 
We also need a start point so we suppose that X(0) = X0 for some suitable X0.  Throughout we 
suppose k is small. 
    Since only t occurs above as an argument in X(t) in the right hand side of equations (2.5), 
the dynamical system is autonomous. So let  

 = [0, 1] – [1, 0] and = [1, 0] – [0, 1]. T)1,1(]1,1[12 −=−=∆ T)1,1(]1,1[21 −=−=∆
( is the swap from route 1 to route 2 vector and ∆21 is the swap from route 2 to route 1 
vector) and write ∆(X) in the form:    

12∆

 ∆(X) = k{X1[C1(X) – C2(X)]+ ∆12 + X2[C2(X) – C1(X)]+∆21}.   (2.6) 
This is a useful and slightly shorter form of (2.3) and (2.4); it applies naturally to a general 
network. 
    It may be shown (Smith (1984a, b)) that under suitable conditions (C monotone and 
smooth) and with suitable step lengths adjustments (2.5) converges to an equilibrium state. 

1.4. Extending the PAP route swap dynamical system to embrace bottleneck delays 

    Consider again the simple two route network in figure 3, and consider two bottleneck delays 
explicitly; one of these bottleneck delays is at the exit of link 1 where route 1 meets node 1 
and the other is at the exit of link 2 where route 2 meets node 1. Bottleneck delays affect flows 
and so including bottleneck delays explicitly means that these delays must be added to the cost 
vector C already discussed above, and the total cost (running cost plus bottleneck delay) will 
then be felt by the route flow vector X. Also, the bottleneck delays themselves will be affected 
by route flows and so as to equilibrate these bottleneck delays we write down a natural 
dynamical system similar to the PAP dynamical system above. 
    We now consider the dynamical systems to be artificial and not realistic. So we go from 
iteration t to iteration t+1 rather than from day t to day t+1.  
    In the network in figure 3 let  
 b1(t)  =  the bottleneck delay on link 1 at the start of iteration t (in hours) and 
 b2(t)  =  the bottleneck delay on link 2 at the start of iteration t (in hours). 
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We wish to suggest the values of these bottleneck delays at the end of iteration t or the start of 
iteration t+1.  
    Consider b1(t) and suppose that b1(t) > 0. It seems natural to suggest that in our model:  
 if x1 – s1 > 0 then b1(t+1) > b1(t); 
  if x1 – s1 < 0 then b1(t+1) < b1(t); and     (2.7) 
 if x1 – s1 = 0 then b1(t+1) = b1(t). 
There are many dynamical systems which follow these simple rules (2.7). In the appendix we 
show how the PAP dynamical system may be used here. 

2.5. Extending the PAP route and delay change dynamical system to embrace signal green-
times 

    Return now to the simple two route network in figure 2. There are two stages as shown in 
figure 2 and so there are two green-times G1 and G2. G1  applies on link 1 (stage 1) where route 
1 meets node 1 and G2 applies on link 2 (stage 2) where route 2 meets node 2. These two 
green-times will affect flows and bottleneck delays and so these must now be included in the 
dynamical system we are creating. How this may be done is shown in detail in the appendix.  
     Here we are considering a dynamical system so just like flows and delays above it is 
natural to suppose G1, G2, s1b1  and s2b2 are known at the start of iteration t and then during 
iteration t to change G1 and G1 aiming to more closely fit the P0 rule at the end of iteration t.  
We again follow PAP to swap green-time away from the approach with the smaller of the two 
values s1b1 and s2b2, adding the same amount to the approach with the greater sb value.  

Suppose that, in the network in figure 2,  
 G1(t)  =   the green-time on route / stage 1 at the start of iteration  t (a proportion and 

  so dimensionless) and 
 G2(t) =   the green-time on route / stage 2 at the start of iteration  t (a proportion and 

  so dimensionless). 
Suppose also that delays at the start of iteration t are 

  b1(t) = delay on link 1 (in hours); and  
 b2(t) = delay on link 2 (in hours).  

Suppose finally that at the start of a specific iteration t, s1b1(t)) < s2b2(t)). Just as with route 
flows above a natural assumption is that green time swaps from route / stage 1 to route / stage 
2 during  iteration t as follows. 
 ∆G1(t) [s2b2(t) – s1b1(t)] and              )(1 tkG−=
 ∆G2(t) [s2b2(t) – s1b1(t)]       )(1 tkG=
and so 
 G(t+1) = G(t) + [∆G1(t), ∆G2 (t)]      
    Again the description here is expanded in the appendix giving many details.  

 
3. Traffic signal control and routeing: a context 
 
    Webster (1958) was one of the first to seek to model signal timings and their effect on traffic flow at a 
single junction (assuming that flows are essentially fixed). Robertson (1969) gives a model of a whole 
network (TRANSYT) allowing whole network optimisation of traffic signals (for know OD inputs and 
known routes). Hunt et al (1982) developed the real time control system SCOOT; essentially from the 
TRANSYT model. The subject is a very large one; Wood (1993) provides a review of certain urban 
traffic control systems.  
    Allsop (1974) pointed out the importance of allowing for route choices when considering the impacts 
of signal control changes. Gartner (1976) considers area traffic control and network equilibrium. Dickson 
(1981) showed that optimising signals for fixed flows does not give optimum timings when route choices 
are variable. Signal-controlled networks, allowing route choices to vary, are considered by Fisk (1980) 
and Sheffi and Powell (1983). Smith (1979a) proposed the P0 traffic control policy and Smith (1987) 
extended the P0 policy to allow for vertical queueing delays.  
    Van Vuren and Van Vliet (1992), Smith and van Vuren (1993), Yang and Yagar (1995) and Yang 
(1996) have considered in detail the interaction between signal control and routeing. Meneguzzer (1996, 
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1997) reports computational experiments with combined traffic assignment and control models and 
provides a review of models linking signal control and route choice. Hu and Mahmassami (1997) have 
studied (within a model) day to day evolution of network flows under real-time information and reactive 
signal control. Taale and van Zuylen (2001) provide interesting discussions of their own work and the 
work of others combining signal control and route choice.  
    More recently, Heydecker (2004) and Heydecker et al (2007) propose an adaptive dynamic control 
system for traffic signals and also considered possible future objectives for traffic signal control. Mounce 
(2009, 2003) has shown that a time-varying equilibrium exists with responsive control (under certain 
conditions, which prohibit blocking back). Smith and Mounce (2011) present a splitting rate model 
embracing in a simplified way both traffic re-routeing and signal control adjustments. 

LINSIG (2010) software generates signal timings for given flows; this software is often 
used in real life for junctions and small networks, and may involve small scale routeing 
considerations. Smith (2010) suggests a way of designing signal timings, but without explicit 
queues. 

The need for models with more realistic explicit queues has been recently emphasised by 
Bliemer et al (2012), Daganzo (1998) and others. Vertical or spatial queueing assignment 
models have been proposed by Thompson and Payne (1975), Larsson and Patriksson (1995), 
Nesterov and de Palma (2003), Nie et al (2004), Smith (2012, 2013). Capacitated models 
which have signal timings are given by Smith (1979a, b, c, 1987), Smith et al (1987), Smith 
(2011) and Smith et al (2013). The last paper has capacity constraints, explicit queues which 
take up space and signal control.  

  
4. Conclusion 
 

This paper has given a stable dynamical model embracing traffic control, queueing delays 
and routeing; the model is deigned so that an implementation in software becomes a signal 
green-time design tool. Signal timings generated by the model (1) make some reasonable 
systematic allowance for travellers’ travel choices (including route choices) and (2) encourage 
congestion-reducing travel choices in the future.  

A brief and selective context of academic papers concerning traffic control / route choice 
has also been provided. 
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APPENDIX 

This appendix has overlaps with section 2 in the main paper above 

2 (Expanded) The proportional-switch adjustment process (PAP) as an iterative process 

    Here we make the above rather vague delay and green time adjustments more precise by 
following in detail a route switch method specified in Smith (1984a). This was then intended  
as a simple and reasonable-looking day to day re-routeing process and has been called a 
“proportional-switch adjustment process”, or PAP, by He et al (2010). This routeing 
adjustment process allows the stability or otherwise of a given traffic equilibrium to be 
studied; this is important since unstable equilibria are unlikely to persist. Also if an existing 
equilibrium might be moved by a control intervention to a “better” equilibrium then dynamical 
considerations are essential. 

2.1.  The proportional switch adjustment process in a very simple network 

  Link 1  Route 1 

Link 2 
 ORIGIN 

 DESTINATION 

2 1 0 
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F k 

 

igure 4. A two route networ
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Suppose that, in the network in figure 4,  
 X1(t)   =  the flow on route 1 on day t (in vehicles per hour) and 
 X2(t)   =  the flow on route 2 on day t (in vehicles per hour). 

Suppose also that costs depend on flows and that 
  C1(X1(t)) = the cost of travel via route 1 on day t (in hours); and  
 C2(X2(t)) = the cost of travel via route 2 on day t (in hours).  

Suppose finally that on a specific day t, C1(X1(t)) >  C1(X1(t)). How might the day to day 
system evolve? 
    A natural assumption is that the traveller flow swapping from route 1 on day t to route 2 on 
day t +1 is an increasing function of both  

• the flow X1(t) on the more expensive route 1 on day t and   
• the difference C1(X(t)) – C2(X(t)) in route costs on day t. 

Here X(t) = [X1(t), X2(t)]  is the route flow vector on day t and C(X(t)) = [C1(X(t)), C2(X(t))] is 
the route-cost vector on day t. The simplest natural swapping hypothesis, following on from 
above, is then that the traveller flow swapping from route 1 to route 2 will be proportional to 
the product of the two factors above. If the only swaps are from higher to lower cost routes 
then this “proportional to the product” assumption means that for some constant k > 0, the 
changes ∆1(X(t)), ∆2(X(t)) in the traveller flows on routes 1 and 2 will be given by the 
formulae:   
  ∆1(X(t)) [C1(X(t)) – C2(X(t))] and    (2.1) )(1 tkX−=
  ∆2(X(t)) [C1(X(t)) – C2(X(t))] .    (2.2)  )(1 tkX+=
For each real number x we put x+ = max{x, 0}. Using this notation (2.1), (2.2) become: 
 ∆1(X(t)) )(1 tkX−= [C1(X(t)) – C2(X(t))]+ )(2 tkX+ [C2(X(t)) – C1(X(t))]+ and (2.3) 
 ∆2(X(t)) )(2 tkX−= [C2(X(t)) – C1(X(t))]+ )(1 tkX+ [C1(X(t)) – C2(X(t))]+. 
 (2.4) 
Given these rates (2.3) and (2.4), the idealized day to day dynamical system becomes: 
 + ∆1(X(t))  and )()1( 11 tXtX =+ )()1( 22 tXtX =+ + ∆2(X(t)) 
or, if we put ∆(X(t)) = [∆1(X(t)), ∆2(X(t))], 
 X(t + 1) = X(t) + ∆(X(t)).        (2.5) 
We also need a start point so we suppose that X(0) = X0 for some suitable X0.  
    Since only t occurs above as an argument in X(t) in the right hand side of equations (2.5), 
the dynamical system is autonomous. So let  

 = [0, 1] – [1, 0] and = [1, 0] – [0, 1]. T)1,1(]1,1[12 −=−=∆ T)1,1(]1,1[21 −=−=∆
( is the swap from route 1 to route 2 vector and ∆21 is the swap from route 2 to route 1 
vector) and define ∆(X) in this case instead by:    

12∆

 ∆(X) = k{X1[C1(X) – C2(X)]+ ∆12 + X2[C2(X) – C1(X)]+∆21}.   (2.6) 
This is a useful and slightly shorter form of (2.3) and (2.4). 
 

2.2 Extending PAP, given by (2.6) to a more general network 

    Equation (2.6) may be extended to the case where there are several routes joining a single 
OD pair by putting  

 ∆(X) = k{Xr[Cr(X) – Cs(X)]+ ∆rs + Xs[Cs(X) – Cr(X)]+∆sr}.  (2.7) ∑
< }:),{( srsr

Equation (2.7) may then be easily extended to the case where there are several routes joining 
several OD pairs by putting, for OD pair q:  
 ∆q(X) = k{Xqr[Cqr(X) – Cqs(X)]+ ∆qrs + Xqs[Cqs(X) – Cqr(X)]+∆qsr}. (2.8) ∑

< }:),{( srsr

Here the routes joining OD pair q are labelled q1, q2, q3, . . . , qNq so that Nq routes join OD 
pair q. “Adding over q” we obtain: 
 ∆(X) = [∆1(X), ∆2(X), . , . , ∆q(X),  . , , ∆K(X)];    (2.9) 
here the number of OD pairs is K.  
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    We may now recover the dynamical system (2.5) by putting: 
 X(t + 1) = X(t) + ∆((X(t)) for t = 0, 1, 2, 3, . . . .  ;               (2.10) 
 X(0) = X0 

where X0 is a given starting route flow vector meeting a given fixed demand and ∆(X) is given 
by (2.8) and (2.9). Thus evolution (2.10) defines a proportional adjustment process or PAP in 
a many OD pair many route network.  

2.3.  Departure from equilibrium 

    Following Smith (1984a), let  
 Vq(X) = Xqr{[Cqr(X) – Cqs(X)]+

2
 + Xqs[Cqs(X) – Cqr(X)]+

2} and             (2.11) ∑
< }:),{( srsr

 V(X) =∑ Vq(X)                  (2.12) 
q

for all X ∈ D. Then V given in (2.11) and (2.12) is a measure of departure from equilibrium 
and it is easy to see that  
 V(X) = 0 if and only if  {for all q, r, s, Xqr[Cqr(X) – Cqs(X)]+

2 = 0} 
 if and only if   {for all q, r, s, [Cqr(X) – Cqs(X)] > 0 ⇒ Xqr = 0}  
 if and only if   X is a Wardrop equilibrium.  
    The set E of Wardrop equilibria (see Wardrop (1958)) may thus be specified as follows:  
 E = {X ∈ D; V(X) = 0}.                  (2.13) 
It is natural to consider approximate equilibria; so, for any ε > 0, let 
 Eε = {X ∈ D; V(X) ≤ ε}.                  (2.14) 
    Suppose that C(.) is monotone and directionally differentiable. In this case ∆(X) given in 
(2.8) and (2.9) is a descent direction for V. See Smith (1984a). 

2.4. Extending the PAP route swap dynamical system to embrace bottleneck delays 

    Consider again the simple two route network in figure 4, and consider two bottleneck delays 
explicitly; one of these bottleneck delays is at the exit of link 1 where route 1 meets node 1 
and the other is at the exit of link 2 where route 2 meets node 1. Bottleneck delays affect flows 
and so including bottleneck delays explicitly means that these delays must be added to the cost 
vector C already discussed above, and the total cost (running cost plus bottleneck delay) will 
then be felt by the route flow vector X. Also, the bottleneck delays themselves will be affected 
by route flows and so as to equilibrate these bottleneck delays we need to write down a natural 
dynamical system similar to the PAP dynamical system above. 
    We now consider the dynamical systems to be artificial and not realistic. So we go from 
iteration t to iteration t+1 rather than from day t to day t+1.  
    In the network in figure 4 let  
 b1(t)  =  the bottleneck delay on link 1 at the start of iteration t (in hours) and 
 b2(t)  =  the bottleneck delay on link 2 at the start of iteration t (in hours). 
We wish to suggest the values of these bottleneck delays at the end of iteration t or the start of 
iteration t+1.  
    Consider b1(t) and suppose that b1(t) > 0. It seems natural to suggest that  
 if x1 – s1 > 0 then b1(t+1) > b1(t); 
  if x1 – s1 < 0 then b1(t+1) < b1(t); and                (2.15) 
 if x1 – s1 = 0 then b1(t+1) = b1(t). 
There are many dynamical systems which follow these simple rules. To follow PAP above we 
first estimate an upper bound on b1 and call this maxb1; maxb1 is to be fixed. Then for k > 0 
and small we define:  
 ∆b1 = k{[x1 – s1]+(maxb1 - b1)1 + [s1 – x1]+b1(-1)} and  
 b1(t+1) = b1(t) +  ∆b1(t) for t = 1, 2, 3, . . .                 (2.16) 
This, (2.16), is a little like (2.7) – (2.10) and clearly obeys the simple rules (2.15) above.  
    Putting this another way let  
 ∆b1 = k{[x1 – s1])+(maxb1 - b1)∆01 + [s1 – x1]+b1 ∆10}. 
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where 
 and . ]01[01 −=∆ ]10[10 −=∆
( is the swap from 0 to 1 (a scalar or 1-vector) and 01∆ 10∆  is the swap from 1 to 0 (also a 
scalar or 1-vector); both corresponding to link 1.). This is to be done for each link a, and we 
will now write ∆blink1 for ∆b1 above (and so on), so that for the general link a: 
   ∆blinka =    k{[xa – sa])+(maxba – ba)∆01 + [sa – xa]+ba ∆10}.              (2.17) 
where 
 and .  ]01[01 −=∆ ]10[10 −=∆
    Using these link delay swap vectors, two for each link, define ∆LINKS(X, b) by:    
  ∆LINKS(X, b) = [∆blink1, ∆blink2, . . . . , ∆blinka, . . . , ∆blinkm] 
This is a vector of dimension = m = the number of links in the network. 
    Bottleneck delays also affect flows so in (2.8) and (2.9). To take account of these we need 
the route-link incidence matrix A: 
 Aaqr = 1 if link a is part of route qr and = 0 otherwise.   
 Cqr(X) must now be replaced by  
 Cqr(X)  +  ∑

a

AT
qraba = Cqr(X) + [ATb]qr,  

so that now    
∆ODq(X, b) = k{Xqr[(Cqr(X)+[ATb]qr)–(Cqs(X)+[ATb]qs)]+∆qrs ∑

< }:),{( srsr

              + Xqs[(Cqs(X)+[ATb]qs)–(Cqr(X)+[ATb]qr)]+∆qsr},              (2.18) 
 ∆ODS(X, b) = [∆OD1(X, b), ∆OD2(X, b), . . .  , ∆ODK(X, b)] 
and finally  
 ∆(X, b) = [∆ODS(X, b), ∆LINKS(X, b)].                (2.19)     

2.5. Extending the PAP route and delay change dynamical system to embrace signal green-
times 

  Route 1   Link 1                      Stage 1 
 
 
   
 
 
 

   Link 2                        Stage 2 
 ORIGIN 

 DESTINATION 

2 1 0 

 Route 2 

 Signal  
 Origin  Destination 

2 
 Figure 5. A two route network with two signal stages; link 1 is in stage 1 and link 2 is in stage 

 
    Consider again the simple two route network in figure 2 (figure 5 above). Then there are 
two green-times G1 and G2. G1  applies on link 1 where route 1 meets node 1 and G2 applies on 
link 2 where route 2 meets node 2. These two green-times affect flows and bottleneck delays 
and so these must now be included in the current formulae; this will yield, extending (2.19),   
 ∆(X, G, b) = [∆ODS(X, G, b), ∆STAGES(X, G, b), ∆LINKS(X, G, b)].             (2.21) 
    To specify ∆STAGES(X, G, b), which gives the direction of motion of all signal stage green-
time vectors under the effects of the flows and delays, we here suppose that the queueing 
delay version of the P0 control policy is applied (see Smith (1987)) in a dynamical manner. 
Given bottleneck delays b1 and b2, the control policy P0 allocates green-times G1, G1 to links 1 
and 2 so that  
  s1b1 = s2b2.                  (2.22) 
(Green-times are a proportion and so must add to 1 here. In a real life context it would here be 
assumed that green-times influence bottleneck delays.)  
     Here we are considering a dynamical system so just like flows and delays above it is 
natural to suppose G1, G2, s1b1  and s2b2 are known at the start of iteration t and then during 
iteration t to change G1 and G1 aiming to more closely fit the rule (2.22) at the end of iteration 
t. Here we again follow PAP again and swap green-time away from the approach with the 
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smaller of the two values s1b1 and s2b2, adding the same amount to the approach with the 
greater sb value.  

Suppose that, in the network in figure 1,  
 G1(t)  =   the green-time on route 1 at the start of iteration  t (a proportion and so  

  dimensionless) and 
 G2(t) =   the green-time on route 2 at the start of iteration  t (a proportion and so  

  dimensionless). 
Suppose also that delays at the start of iteration t are 

  b1(t) = delay on link 1 (in hours); and  
 b2(t) = delay on link 2 (in hours).  

Suppose finally that at the start of a specific iteration t, s1b1(t)) < s2b2(t)). Just as with route 
flows above a natural assumption is that green time swaps from route 1 to route 2 on iteration t 
as follows. 
 ∆G1(t) [s2b2(t) – s1b1(t)]                        (2.23) )(1 tkG−=
and 
 ∆G2(t) [s2b2(t) – s1b1(t)]                 (2.24)  )(1 tkG=
and so 
 G(t+1) = G(t) + [∆G1(t), ∆G2 (t)]                 (2.25) 
To allow for s1b1(t)) > s2b2(t)), put x+ = max{x, 0}. Then (2.23), (2.24) become: 
 ∆G1(t) [s2b2(t) – s1b1(t)]+  + [s1b1(t) – s2b2(t)]+  )(1 tkG−= )(2 tkG
 ∆G2(t) [s1b1(t) – s2b2(t)]+  + [s2b2(t) – s1b1(t)]+  )(2 tkG−= )(1 tkG
The dynamical system (2.25) then becomes: 
 + ∆G1(t)  and )()1( 11 tGtG =+ )()1( 22 tGtG =+ + ∆G1(t) or 
 G(t + 1) = G(t) + ∆G(t).                   (2.26) 

Let  
 = [0, 1] – [1, 0] and = [1, 0] – [0, 1]. T)1,1(]1,1[12 −=−=∆ T)1,1(]1,1[21 −=−=∆
( is now the swap from stage 1 to stage 2 vector and ∆21 is now the swap from stage 2 to 
stage 1 vector) and define ∆G in this case instead by:    

12∆

 ∆G(t)) [s2b2(t) – s1b1(t)]+ ∆12  + [s1b1(t) – s2b2(t)]+∆21             (2.27) )(1 tkG= )(2 tkG

2.6 Extending the dynamical green-time system to a more general network 

     Equation (2.27) may be extended to the case where there are several stages at a single 
junction by letting G be the vector of stage green-times and B be the link-stage incidence 
matrix defined by putting 
 Bar  = sa if link a is part of stage r and = 0 otherwise. 
The we put    
∆G(t) = { [(Bb)s – (Bb)r]+ ∆rs  + [(Bb)r – (Bb)s]+∆sr}       (2.28) ∑

< };);,{( srsr

)(tkGr )(tkGs

     Equation (2.28) may be extended to the case where there are several stages at several 
junctions by letting B be the link-stage incidence matrix defined by putting 
 BaJs  = sa if link a is part of stage Jr  and = 0 otherwise 
and 
∆JUNCTIONJ([G, b](t)) 
= { [(Bb)Js – (Bb)Jr]+ ∆JrJs  + [(Bb)Jr – (Bb)Js]+∆JsJr}        (2.29) ∑

< };);,{( srrs

)(tkGJr )(tkGJs

Here the dependence on G and b at iteration t is made explicit and the stages at junction J are 
labelled J1, J2, J3, . . . , JNS(J), where there are NS(J) stages at junction J. Then we may “add 
over all junctions” obtaining: 
∆JUNCTIONS([G, b](t))  
 = [∆JUNCTION1([G, b](t)), ∆JUNCTION2([G, b](t)), . . . , ∆JUNCTIONM([G, b](t))]. (2.30) 
    We may now recover a dynamical system like (2.5)) by putting: 
 G(t + 1) = G(t) + ∆JUNCTIONS([G, b](t)) for t = 0, 1, 2, 3, . . . .  ;  (2.31) 
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 [G, b](0) = [G, b]0 

where [G, b]0 is a given starting stage green-time vector and ∆JUNCTIONS([G, b](t)) is given by 
(2.29) and (2.30). Thus evolution (2.31) defines a proportional green-time adjustment process 
in a many junction many stages network.  

2.7 Combining the three dynamical systems 

    First we amend evolution of the bottleneck delays in (2.17) above to allow for green times. 
So now 
 ∆blinka =    k{[xa – saga]+(maxba – ba)∆01 + [saga– xa]+ba ∆10} 
  =     k{[(AX)a – (BG)a]+(maxba – ba)∆01 + [(BG)a– (AX)a]+ba ∆10} 
and: ∆LINKS(X, G, b) = [∆blink1, ∆blink2, . . . . , ∆blinka, . . . , ∆blinkm].     
We then let  
 ∆[X, G, b] = [∆ODS(X, b), ∆JUNCTIONS(G, b)(t)), ∆LINKS(X, G, b)] (2.32) 
 
2.8. An objective function for the whole dynamical system 
 
    Given a triple [X, G, b], consider OD pair q, junction J and link a. The three directions  
 ∆ODq(X, b), ∆JUNCTIONJ(X, G, b) and ∆Linka(X, G, b)   (2.33)  
specify the direction of motion of Xq, GJ and ba and these all combine to give ∆([X, G, b], 
giving the direction of motion of the whole vector [X, G, b] and so giving rise to the following 
dynamical system:  
 [X, G. b](t + 1) = [X, G, b](t) + ∆([X, G, b](t)) for t = 0, 1, 2, 3, . . . .  ; (2.34) 
 [X, G, b](0) = [X, G, b]0. 
Associated measures of departure from equilibrium    
 VODq(X, b), VJUNCTIONJ([X, G, b]) and  Vlinka([X, G, b])  
are given below. These measure the extent to which  
 [∆ODq(X, b), ∆JUNCTIONJ(X, G, b), ∆Linka(X, G, b)] 
departs from the zero vector.  
    The directions (2.33) and associated measures of departure from equilibrium are: 
∆ODq (X, b) = k{Xqr[(Cqr(X)+[ATb]qr)–(Cqs(X)+[ATb]qs)]+∆qrs ∑

< }:),{( srsr

   + Xqs[(Cqs(X)+[ATb]qs)–(Cqr(X)+[ATb]qr)]+∆qsr}. 
 
VODq (X, G, b) = k{Xqr[(Cqr(X)+[ATb]qr)–(Cqs(X)+[ATb]qs)]+

2  ∑
< }:),{( srsr

   + Xqs[(Cqs(X)+[ATb]qs)–(Cqr(X)+[ATb]qr)]+
2}. (2.35) 

 
∆JUNCTIONJ (G, b) = ∑

< };);,{( srrs

{ [(Bb)Js – (Bb)Jr]+ ∆JrJs  + [(Bb)Jr – (Bb)Js]+∆JsJr}    

  

JrkG JskG

VJUNCTIONJ (G, b) = ∑
< }:),{( srsr

{ [(Bb)Js – (Bb)Jr]+ 
2
  + [(Bb)Jr – (Bb)Js]+

2}    (2.36)  JrkG JskG

 
∆blinka (X, G, b)  =  k{[(AX)a – (BG)a]+(maxba – ba)∆01 + [(BG)a– (AX)a]+ba ∆10} 
 
Vlinka (X, G, b)  =  k{(maxba – ba)[(AX)a – (BG)a]+

2 + ba[(BG)a– (AX)a]+
2} (2.37) 

 
Finally to obtain a measure of departure from equilibrium for the whole dynamical system 
(2.34) we add the different components of V given above to obtain:  
V([X, G, b]) = ∑ VODq ([X, G, b]) + 

q
∑

J

VJUNCTIONJ ([X, G, b]) + ∑
a

VLinka ([X, G, b]) 

         (2.38) 
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2.9. Monotonicity and stability 
 
   The underlying cost function is now [C(X) + ATb, BG - AX, -BTb]. It is easy to see that if 
C(X) is monotone (perhaps constant) then   
  [C(X) + ATb, -BTb, BG - AX]. is a monotone function of [X, G, b].  
It follows that the stability results in Smith (1984a, b) may be utilised. Provided suitable step 
lengths are used the dynamical system (2.34) must converge to the set of equilibrium [X, G, 
b], where V in (2.35) equals zero. If at such an equilibrium the upper bounds are not binding 
(or b < maxb) this equilibrium will yield  
  equilibrium route flows, 
  equilibrium stage green-times and 
  equilibrium bottleneck delays. 
Even with constant small step lengths (2.34) will converge to approximate equilibrium. 
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